用檢測器模型去解決跟蹤問題,遇到的比較大問題是訓練數據不足。普通的檢測任務中,因為檢測物體的類別是已知的,可以收集大量數據來訓練。例如 VOC、COCO 等檢測數據集,都有著上萬張圖片用于訓練。而如果我們將跟蹤視為一個特殊的檢測任務,檢測物體的類別是由用戶在首先幀的時候所指定的。這意味著能夠用來訓練的數據只是只是只有少數幾張圖片。這給檢測器帶來了很大的障礙。而慧視光電定制的目標跟蹤算法可以有效的解決這個問題,通過AI自動圖像標注平臺SpeedDP的大量模型部署訓練,能夠有效解決數據訓練不足的問題。AI算法賦能下的圖像處理板能夠進行目標識別。江蘇目標跟蹤設備
在智慧農業領域可以分為人工干涉和無人值守2種。系統提供了良好的人機界面,用戶可以通過系統的視頻顯示區觀看攝像機攝制的現場視頻,此時,用戶可以人工通過系統提供的按鈕以各種方式控制云臺,即人工可以干涉監控的過程。系統在大部分情況下處于無人值守的工作狀態,當監控中心的計算機系統收到外場設備的預警信號后,將自動向攝像機云臺發出控制信號,控制攝像機將發生報警區域的圖像鎖定在監視器上,并同時按系統的設定調整好焦距,視野大小等。然后系統自動轉入運動檢測,檢測當前區域是否有運動目標,如果有運動目標,則系統給出目標的一般性描述,提交給目標跟蹤模塊,對目標進行跟蹤。在這過程中,系統將作日志,記錄事故位置、時間等,同時對采集到的圖像作硬盤錄像。江蘇目標跟蹤設備RK3588跟蹤板如何實現目標的識別及跟蹤?
從軟件的角度來看,整個視頻跟蹤系統主要是由電視攝像機及控制、圖像獲取模塊、圖像顯示模塊、數據庫,運動檢測,目標跟蹤,報警輸入和人機接口模塊等組成的。視覺計算模塊是視頻跟蹤系統的重點,是實現目標檢測和跟蹤的關鍵,如圖3所示。一般采取先檢測后跟蹤(Detect-before-Track)方式,目標的檢測和跟蹤是緊密結合的。檢測是跟蹤的前因,并為跟蹤提供了目標的信息(如目標的位置,大小,模式和速度估計等),而跟蹤則是檢測的延續,實時利用檢測得到的知識去驗證目標的存在。
在很長一段時間內,傳統的糧庫害蟲檢查方法是依靠人工巡檢,用肉眼觀察,逐倉篩查的方法,這種方法覆蓋面不足且效率低下,篩查一次將耗費工作人員的大量時間精力。隨著技術的發展,AI化的篩查逐步采用,通過算法的AI識別實現自動化篩查。方法基于高像素高清攝像機,實時遠程監控糧庫,一旦發現害蟲就能夠立即向管理平臺發出告警,有效降低巡檢成本和壓力,提升工作效率。這之中,實現AI識別處理的傳感器同樣重要,面對復雜的糧庫環境,一個高性能能夠快速處理數據的圖像處理板是關鍵。Viztra-LE034圖像跟蹤板支持目標跟蹤識別目標(人、車)。
利用無人機實現智能化識別能夠幫助我們提升許多工作效率,在很多行業都有應用。像安防巡檢、交通管理等,飛在高空的無人機比傳統的地面巡邏更有視野,更能搜集掌握全局信息,再通過和地面巡邏的配合,能夠有效減少工作量。但是在無人機識別的過程中會遇到很多問題,比如當環境變得復雜時,識別的精度可能就會受到影響。AI識別算法是一種深度學習的算法,它不是一成不變的,它也需要適應不同的環境,因此對于AI算法的訓練也必不可少。智能圖像跟蹤在機場周界中的應用。江蘇目標跟蹤設備
成都慧視的跟蹤版是國產化的!江蘇目標跟蹤設備
而維修機器人則能夠通過圖像識別、精細遠程控制技術,實現遠程快速維修,通過加裝高性能圖像處理板,機器人能夠精細電網缺陷以及損壞程度,并通過攝像頭實時回傳高清畫面,工程師只需要遠程操控機器人進行修補,實現精細縫合。整個過程只需要極少數的人員參與,整個巡檢維修的時間能夠從7小時縮減到1小時,極大地保障了電力供應。成都慧視光電采用RK3588開發而成的Viztra-HE030圖像處理板,具備八核處理器,采用BTB傳輸接口,擁有極強傳輸能力,成都慧視能夠憑借豐富的經驗,快速集成開發SDI、CVBS、DVP、LVDS、cameralink等接口以及金屬外殼和散熱器。通過6.0TOPS的算力,以及豐富的接口定制,板卡能夠快速適配不同的無人機和機器人,用在我國西部電力運維領域,將是工程師打造智能化維護的關鍵技術。江蘇目標跟蹤設備