例如是飛過來的雜物,還是闖入的人或者動物,如果攝像頭能夠智能識別,那么就可以實現上述目的。而要實現這樣的功能,一個很簡單的方法就是在傳統攝像頭的基礎上植入高性能的AI圖像處理板。圖像處理板通過定制接口和攝像頭連接,在目標識別算法的賦能下,就能夠對攝像頭獲取的物體進行AI識別分類,從而對攝像頭發出指令是否鎖定跟蹤目標,從而轉動攝像頭。成都慧視開發的Viztra-ME025圖像處理板,是慧視光電采用瑞芯微RK3399pro芯片開發而成的高性能板卡,芯片基于雙Cortex-A72+四Cortex-A53大小核CPU結構;CPU主頻1.8GHz;高性能+強大的算力3.0TOPS,GPU采用Mali-T860MP4,支持1080P視頻編解碼、H.265硬解碼。打造一套穩定的識別模塊需要多久?山西邊海防圖像識別模塊提供商
SpeedDP作為一個服務型AI平臺,它能提供從數據標注、模型訓練、測試驗證到RockChip嵌入式硬件平臺模型部署的可視化AI開發功能。平臺所需算法并不是固定的,使用者可以根據自身實際應用場景進行AI算法的定制化開發,例如平臺經過不斷的迭代,目前能夠支持YOLOv8系列算法進行圖像標注。SpeedDP這個平臺使用起來十分簡便,在圖像標注領域其基本使用方法是:1.首先有一個比較好的預選模型2.用這個預選模型做自動標注3.后期人工審核修正 貴州運動軌跡圖像識別模塊軟件慧視光電能夠深度定制RV1126系列的目標識別模塊。
AI的不斷應用發展使得傳統的人工工作的弊端得到了很好的彌補。比如在圖像標注這個領域,傳統的標注需要招聘大量的人員,并且標注圖像所耗費的時間精力也是不可估量的,而AI模型的出現讓這一切都成為過去。利用慧視光電打造的深度學習算法開發平臺SpeedDP,就能夠針對場景識別進行特有的模型部署訓練,通過大量的訓練,讓AI學會自動標注圖像。平臺采用標準的AI算法開發流程,通過從需求分析、數據制作到模型訓練、測試驗證以及模型部署幾個主要模塊。
SpeedDP用于模型訓練和評估測試的數據集是由一系列的圖像和標注文件組成的,平臺支持多種開源數據格式如VOC和COCO。而目前平臺共支持yolox系列和yolov8系列模型用于模型訓練(分割任務支持yolov8模型),通過不斷額測試驗證,就能夠讓AI實現海思、RockChip嵌入式硬件平臺等模型部署的可視化AI開發功能。經過驗證,訓練成熟后的AI進行標注時,通常情況下,7-8ms就能標注一張圖像,這是人工標注遠不能及的速度。目前,我司能夠為該平臺提供完整的人、車、船等目標檢測模型的數據提供,也可以根據應用場景進行特殊定制。各類船只識別的模塊定制。
利用無人機實現智能化識別能夠幫助我們提升許多工作效率,在很多行業都有應用。像安防巡檢、交通管理等,飛在高空的無人機比傳統的地面巡邏更有視野,更能搜集掌握全局信息,再通過和地面巡邏的配合,能夠有效減少工作量。但是在無人機識別的過程中會遇到很多問題,比如當環境變得復雜時,識別的精度可能就會受到影響。AI識別算法是一種深度學習的算法,它不是一成不變的,它也需要適應不同的環境,因此對于AI算法的訓練也必不可少。小型化低功耗的AI目標識別模塊。圖像識別模塊技術
慧視光電能夠深度定制RK3588系列的目標識別模塊。山西邊海防圖像識別模塊提供商
多目標跟蹤是指在連續的圖像中,通過目標檢測算法識別出每一幀中的目標,并在時間上跟蹤它們的位置和狀態。但目標會不斷發生尺度、形變、遮擋等變化,而且還會有目標出現和消失的情況,再加上視頻采集端的相機所處環境可能受到外界影響導致抖動的情況(例如無人機高空檢測),就會給多目標跟蹤造成一定的困難。由于我們不能控制目標,所以只能從視頻采集端維護跟蹤的穩定性。因此,成都慧視針對于多目標檢測跟蹤抖動丟失的優化方法是:1.改進目標檢測,使用更加魯棒的目標檢測算法。2.增強特征描述,利用深度學習提取更高級別的語義特征,這些特征對于小范圍內的視角變化具有更好的不變性3.改進運動模型,在算法中加入對攝像頭運動的估計,通過補償攝像頭運動來減小目標真實運動與預測之間的差距。4.數據關聯策略,設計更靈活的數據關聯算法,允許更大的距離閾值來匹配候選目標。山西邊海防圖像識別模塊提供商